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In this paper, nonlinear free vibration of nanobeams with various end conditions is stu-
died using the nonlocal elasticity within the frame work of Euler-Bernoulli theory with
von Kármán nonlinearity. The equation of motion is obtained and the exact solution is es-
tablished using elliptic integrals. Two comparison studies are carried out to demonstrate
accuracy and applicability of the elliptic integrals method for nonlocal nonlinear free vibra-
tion analysis of nanobeams. It is observed that the phase plane diagrams of nanobeams in
the presence of the small scale effect are symmetric ellipses, and consideration the small
scale effect decreases the area of the diagram.
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1. Introduction

Due to superior properties, nanostructures have attracted much attention in the recent years.
Multiple recent experimental results have shown that as the size of the structures reduces to
micro/nanoscale, the influences of atomic forces and small scale play a significant role in mecha-
nical properties of these nano-structures (Chong et al., 2001; Fleck et al., 1994; Ma and Clarke,
1995). Thus, neglecting these effects in some cases may results in completely incorrect solutions
and hence wrong designs. The classical continuum theories do not include any internal length
scale. Consequently, these theories are expected to fail when the size of the structure becomes
comparable with the internal length scale. Eringen’s nonlocal theory is one of the well-known
continuum mechanics theories (Eringen, 2002) that includes small scale effects with good ac-
curacy to micro/nanoscale devises modeling. The nonlocal elasticity theory assumes that the
stress at a point is a function of the strain at all neighbor points of the body.
In the recent years, studies of nanostructures by using the nonlocal elasticity theory have been

an area of active research. Based on this theory, Reddy (2007) derived the equation of motion
of various kinds of beam theories available (Euler-Bernoulli, Timoshenko, Reddy and Levinson)
and reached analytical and numerical solutions on static deflections, buckling loads, and natural
frequencies. Hosseini-Hashemi et al. (2013) considered surface effects on free vibration of Euler-
Bernoulli and Timoshenko nanobeams by using the nonlocal elasticity theory. Xie et al. (2006)
considered the radial buckling pressure of a simply supported multi-walled carbon nanotube
in the presence of the small scale effects. Kiani (2010) studied free longitudinal vibration of
tapered nanowires. In (Heireche et al., 2008; Narendar and Gopalakrishnan, 2009; Wang and
Hu, 2005; Wang, 2005; Wang and Varadan, 2007), the effect of small scales on wave propagation
of single- and multi-walled carbon nanotubes was considered. As an application of Eringen’s
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nonlocal theory to post-buckling analysis of single-walled carbon nanotubes, it can be referred
to the work done by Setoodeh et al. (2011).
The nonlocal elasticity theory has also been used for nonlinear analyses of nanostructures,

especially nanobeams. In this area, Reddy (2010) derived a nonlocal nonlinear formulation for
bending of classical and shear deformation theories of beams and plates, but he did not present
any numerical results. Yang and Lim (2009) examined the effect of the nonlocal parameter on
nonlinear vibrations of Euler nanobeams. To evaluate the nonlinear natural frequencies, the
method of multiple scales was applied to the governing equation. The method of multiple scales
was also used in (Nazemnezhad and Hosseini-Hashemi, 2014; Hosseini-Hashemi et al., 2014)
for evaluating the nonlocal nonlinear natural frequencies of functionally graded Euler-Bernoulli
nanobeams. Fang et al. (2013), Ghorbanpour Arani et al. (2012), Ansari and Ramezannezhad
(2011), Yang et al. (2010) and Ke et al. (2009) investigated nonlinear free vibration of single
and multi-walled carbon nanotubes with the aid of the nonlocal elasticity theory.
In the mentioned references, a numerical method, the DQ method, semi analytical methods,

the harmonic balance method and the method of multiple scales have been employed to solve the
nonlocal nonlinear governing equations. Hence, no exact closed-form solution is available in the
literature for nonlocal nonlinear analyses of nanobeams. Motivated by the literature survey, this
study aims to investigate the nonlocal nonlinear free vibration of Euler-Bernoulli nanobeams
by an exact solution called the elliptic integrals. To this end, firstly, the governing equation
of motion of the Euler-Bernoulli nanobeam has been obtained in the nonlocal form. Then, a
closed-form expression for the nonlocal nonlinear natural frequencies has been presented by
using the elliptic integrals. Finally, the accuracy of the present exact results are compared with
those reported in literature, and the small scale effects on the phase plane diagram and higher
frequency ratios are considered in the results and discussion śection.

2. Formulation

Consider a nanobeam with length L (0 ¬ x ¬ L), thickness 2h (−h ¬ z ¬ h) and width b
(−b/2 ¬ y ¬ b/2) (Fig. 1). Upon the Euler-Bernoulli beam model, the displacement field at any
point of the nanobeam can be written as

ux(x, z, t) = U(x, t)− z
∂W (x, t)

∂x
uz(x, z, t) =W (x, t) (2.1)

where U(x, t) and W (x, t) are the displacement components of the mid-plane at time t. In
accordance, the von Kármán type of the nonlinear strain-displacement relationship is

εxx =
∂ux
∂x
+
1

2

(∂uz
∂x

)2
=
∂U

∂x
− z ∂

2W

∂x2
+
1

2

(∂W

∂x

)2
(2.2)

Fig. 1. Geometry of the problem

Now, by using Hamilton’s principle, the nonlinear equations of motion of the nanobeam can
be derived as

∂Nxx
∂x
= ρA

∂2U

∂t2
∂2Mxx
∂x2

+
∂

∂x

(

Nxx
∂W

∂x

)

= ρA
∂2W

∂t2
(2.3)
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where Nxx and Mxx are the local force and bending moment resultants, respectively, given by

Nxx =

∫

A

σxx dA = EA

[

∂U

∂x
+
1

2

(∂W

∂x

)2
]

Mxx =

∫

A

zσxx dA = −EI
∂2W

∂x2
(2.4)

Equations of motions, Eqs. (2.3), can be used in the nonlocal form

∂Nnlxx
∂x
= ρA

∂2U

∂t2
∂2Mnlxx
∂x2

+
∂

∂x

(

Nnlxx
∂W

∂x

)

= ρA
∂2W

∂t2
(2.5)

where the superscript nl denotes nonlocal. If the axial inertia is neglected, Eq. (2.5)1 gives

Nnlxx = N0 = const (2.6)

The nonlocal force and bending moment resultants can be obtained by multiplying the left-
-hand side of Eqs. (2.4) by (1− µ∇2), using Eqs. (2.5) and (2.6), and doing some mathematical
manipulation. Then they are given by

Nnlxx = EA

[

∂U

∂x
+
1

2

(∂W

∂x

)2
]

Mnlxx = −EI
∂2W

∂x2
+ µ

(

−Nnlxx
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∂x2
+ ρA

∂2W

∂t2

)

(2.7)

For nanobeams with immovable ends (i.e. U and W = 0, at x = 0 and L) and with Eq. (2.6) in
mind, integrating Eq. (2.7)1 with respect to x leads to

Nnlxx = N
nl
0 =

EA

2L

L
∫

0

(∂W

∂x

)2
dx (2.8)

Finally, by substituting Eqs. (2.7)2 and (2.8) in Eq. (2.5)2, the nonlocal nonlinear governing
equation for the Euler-Bernoulli nanobeam can be obtained as

−EI ∂
4W

∂x4
+ µρA

∂4W

∂x2∂t2
+ P

L
∫

0

(∂W

∂x

)2
dx
(∂2W

∂x2
− µ∂

4W

∂x4

)

− ρA∂
2W

∂t2
= 0 (2.9)

where P = EA/(2L), I = 2bh3/3, and the equation of motion of the conventional Euler–Bernoulli
beam theory can be obtained from Eq. (2.9) by setting µ = 0.
For nonlinear free vibration analysis, the averaging technique over the space variable (Ga-

lerkin’s method) is used to convert Eq. (2.9) into an ordinary differential equation. Hence, the
transverse displacement of the n-th mode can be assumed as (Azrar et al., 1999, 2002)

W (x, t) = Dφ(x)q(t) (2.10)

where D is an arbitrary constant which represents the amplitude of deflection, q(t) is a time
dependent function to be determined and φ(x) is the linear mode shape obtained as follows
(Rao, 2007)

SS : φn(x) = sin
(nπ

L
x
)

SC : φn(x) = sin(ζ1x)−
sin(ζ1L)

sinh(ζ2L)
sinh(ζ2x)

(2.11)
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The parameters ζ1 and ζ2 can be determined from the eigenvalue equation

ζ2 tan(ζ1L)− ζ1 tanh(ζ2L) = 0

Substituting Eq. (2.10) and its derivatives into Eq. (2.9), then multiplying by the linear mode
shape and integrating along the length of nanobeam, results in

q̈ − γ1q + γ2q3 = 0 (2.12)

where

γ1 =
EIa4

µρAa3 − ρAa1
γ2 =

IPa2(a3 − µa4)
µρA2a3 − ρA2a1

(D

r

)2
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L
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φ2(x) dx a2 =

L
∫

0

(dφ(x)

dx

)2
dx

a3 =
L
∫

0
φ(x)
d2φ(x)

dx2
dx a4 =

L
∫

0
φ(x)
d4φ(x)

dx4
dx

and r =
√

I/A is the radius of gyration.

Multiplying Eq. (2.12) by q̇ and then integrating with respect to time, with the initial
conditions q(0) = 1 and q̇(0) = 0, leads to

(dq

dt

)2
= −γ1(1− q2) +

γ2
2
(1− q4) (2.13)

Equation (2.13) can be rewritten as

( dq

d(pt)

)2
= (1− q2)(k2q2 − k2 + 1) (2.14)

where p2 = −γ1 + γ2 and k2 = γ2/(2p2). Supposing q = cos θ, and complement the modulus as
pt =

∫ θ
0 (1 − k2 sin2 θ)−1/2 dθ, the solution to Eq. (2.14) can be given by (Lestari and Hanagud,

2001)

q(t) = cn[pt, k] (2.15)

where cn is a Jacobi elliptic function. The Jacobi elliptic functions are real for real p and real k2

between 0 and 1 (Byrd et al., 1971). K is defined by using the complete elliptic integral as

K =

π/2
∫

0

dθ′
√

1− k2 sin2 θ′
(2.16)

Therefore, the nonlocal natural frequency for nonlinear free vibration of nanoscale beams for
each mode can be expressed as

ωnlnl =
π
√
−γ1 + γ2
2K

(2.17)

where the subscript nl denotes nonlinear.
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3. Results and discussion

Before presenting numerical results, it is worth to note here that in order to convert the gover-
ning equation of motion, Eq. (2.9), into an ordinary differential equation, Eq. (2.12), single-mode
Galerkin’s method is used. This method can provide the nonlinear natural frequency of nanobe-
ams with a good accuracy at low amplitude ratios (Ke et al., 2010). At higher amplitude ratios,
multi-mode Galerkin’s method is proposed because the effect of coupling of modes increases
(Chandra and Raju, 1975). Therefore, in order to have the highest possible accuracy in the
following discussion all results are presented for low amplitude ratios, D/r ¬ 3.
Table 1 gives the fundamental local nonlinear frequency to fundamental local linear frequency

ratio ωnl/ωl of a nanobeam with SS and SC end conditions for various values of the amplitude
ratio D/r. The solutions obtained by using numerical and approximate methods like GFEM
(Galerkin Finite Element Method) (Bhashyam and Prathap, 1980), RGFEM (Reduced Galerkin
Finite Element Method) (Bhashyam and Prathap, 1980), ASM (Assumed Space Method) (Even-
sen, 1968), and DQM (Differential Quadrature Method) (Malekzadeh and Shojaee, 2013) are also
provided for direct comparison. It is observed that the present results agree very well with those
given by Malekzadeh and Shojaee (2013), Bhashyam and Prathap (1980) and Evensen (1968). It
is also seen from Table 1 that the present results obtained by the exact method are smaller than
those given by numerical and approximate methods. It can be attributed to this fact that natural
frequencies obtained by numerical and approximate methods are the upper bound of the exact
ones.

Table 1. Comparison of the fundamental local frequency ratio ωnl/ωl for a nanobeam with SS
and SC end conditions µ = 0, E = 70GPa, ρ = 2700 kg/m3, ν = 0.3, L/h = 100

SS SC
D/r Present GFEM RGFEM ASM Present GFEM RGFEM ASM DQM

(Exact) [4] [4] [9] (Exact) [4] [4] [9] [21]

0.5 1.0231 1.0308 1.0308 1.0308 1.0130 1.0165 1.0165 1.0676 –

1.0 1.0892 1.1180 1.1180 1.1180 1.0507 1.0641 1.0641 1.0763 1.0641

1.5 1.1902 1.2499 1.2499 1.2500 1.1105 1.1379 1.1379 1.0905 –

2.0 1.3178 1.4142 1.4142 1.4142 1.1886 1.2319 1.2319 1.1099 1.2319

2.5 1.4647 1.6008 1.6008 1.6008 1.2814 1.3407 1.3407 1.1342 –

3.0 1.6257 1.8028 1.8028 1.8028 1.3860 1.4601 1.4601 1.1631 1.4605

3.5 1.7970 2.0158 2.0158 2.0156 1.4998 1.5865 1.5865 1.1963 –

4.0 1.9760 2.2365 2.2365 2.2361 1.6209 1.7166 1.7166 1.2334 –

4.5 2.1608 2.4630 2.4630 2.4622 1.7477 1.8455 1.8455 1.2741 –

5.0 2.3501 2.6937 2.6937 2.6926 1.8792 1.9651 1.9651 1.3181 –

[4] – Bhashyam and Prathap (1980), [9] – Evensen (1968),
[21] – Malekzadeh and Shojaee (2013)

In Table 2, the fundamental nonlocal nonlinear frequency to fundamental local nonlinear
frequency ratios ωnlnl/ωnl obtained by the present exact solution for a nanobeam with SS and
SC boundary conditions is compared with those given by the semi-analytical approach called
the multiple scales method (MSM) (Nazemnezhad and Hosseini-Hashemi, 2014). The results
are listed for various values of the nanobeam length, amplitude ratio, and nonlocal parameter.
Table 2 shows that the present exact results are identical to those reported by Nazemnezhad and
Hosseini-Hashemi (2014) using the multiple scales method. However, the difference between the
two approaches increases for higher amplitude ratios. This is due to the fact that the accuracy
of the multiple scales method depends on the number of slow scale variables in the expansion
series.
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Table 2. Comparison of the fundamental nonlocal frequency ratio ωnlnl/ωnl for a nanobeam with
SS and SC end conditions E = 210GPa, ρ = 2370 kg/m3, ν = 0.24, b = h = 0.1L

Boundary
condition

Length
[nm]

µ
[nm2]

D/r = 1 D/r = 2
Present MSM

AD∗·100 Present MSM
AD ·100

(Exact) [23] (Exact) [23]

SS

10
2 0.9278 0.9293 0.15 0.9509 0.9631 1.22
4 0.8724 0.8754 0.30 0.9141 0.9379 2.38

20
2 0.9800 0.9803 0.03 0.9863 0.9893 0.30
4 0.9613 0.9621 0.08 0.9736 0.9797 0.61

30
2 0.9909 0.9911 0.02 0.9938 0.9951 0.13
4 0.9821 0.9824 0.03 0.9877 0.9905 0.28

SC

10
2 0.9189 0.9202 0.13 0.9547 0.9676 1.29
4 0.8596 0.8625 0.29 0.9239 0.9519 2.80

20
2 0.9771 0.9774 0.03 0.9869 0.9899 0.30
4 0.9561 0.9567 0.06 0.9751 0.9812 0.61

30
2 0.9896 0.9897 0.01 0.9940 0.9953 0.13
4 0.9795 0.9798 0.03 0.9883 0.9909 0.26

∗ – Absolute of difference, [23] – Nazemnezhad and Hosseini-Hashemi (2014)

Table 3. Frequency ratios of the nanobeam for various mode numbers, amplitude ratios, nano-
beam lengths, nonlocal parameters and boundary conditions

D/r
Length µ Boundary Mode number n
[nm] [nm2] condition 1 2 3

1

10
2

SS 0.9278 0.7921 0.6778
SC 0.9189 0.7864 0.6800

4
SS 0.8724 0.6948 0.5832
SC 0.8595 0.6959 0.5982

20
2

SS 0.9800 0.9278 0.8605
SC 0.9771 0.9233 0.8561

4
SS 0.9613 0.8724 0.7764
SC 0.9561 0.8661 0.7728

2

10
2

SS 0.9509 0.8621 0.7918
SC 0.9547 0.8751 0.8141

4
SS 0.9141 0.8020 0.7377
SC 0.9239 0.8316 0.7806

20
2

SS 0.9863 0.9509 0.9062
SC 0.9869 0.9528 0.9100

4
SS 0.9736 0.9141 0.8522
SC 0.9751 0.9190 0.8620

3

10
2

SS 0.9677 0.9108 0.8674
SC 0.9867 0.9423 0.9069

4
SS 0.9439 0.8736 0.8352
SC 0.9790 0.9281 0.8990

20
2

SS 0.9909 0.9677 0.9388
SC 0.9960 0.9768 0.9513

4
SS 0.9826 0.9439 0.9046
SC 0.9925 0.9610 0.9274
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The above discussion verified the merit, high accuracy and applicability of the present exact
solution, elliptic integrals, for nonlocal nonlinear free vibration analysis of nanobeams with va-
rious boundary conditions. In the following discussion, the small scale effects on the nonlinear
free vibration of nanobeams are considered for higher mode numbers and phase plane dia-
grams (q̇(t) versus q(t)). A nanobeam made of aluminum (Al) with the bulk elastic properties
E = 70GPa, ν = 0.35, ρ = 2700 kg/m3 (Ogata et al., 2002) and square cross section
b = 2h = 0.1L is considered as an illustrative example.

Fig. 2. Phase plane diagrams for the nanobeam: (a) D/r = 1, n = 1, L = 10nm; (b) n = 1, L = 10nm,
µ = 2nm2, (c) D/r = 1, L = 10, µ = 2nm2

Table 3 examines the small scale effects on the first three nonlocal to local nonlinear frequency
ratios ωnlnl/ωnl of the SS and SC nanobeams for various amplitude ratios and nanobeam lengths.
It is seen from Table 3 that the decreasing effect of the nonlocal parameter on the frequency ratios
is greater at higher mode numbers. In addition, regardless of the mode number, by increasing
the nanobeam length and amplitude ratio, the decreasing effect of the nonlocal parameter on the
frequency ratio decreases. Moreover, except for D/r = 1, the decreasing effect of the nonlocal
parameter on the frequency ratio is more pronounced for nanobeams with softer boundary
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conditions. When the amplitude ratio equals to 1, similar effects can only be seen at higher
mode numbers and small lengths.
Figures 2a-2c display the phase plane diagrams (q̇(t) versus q(t)) for nanobeams with different

conditions. It is observed from Figs. 2a-2c that the phase plane diagrams of nanobeams in the
presence of the small scale effect are symmetric ellipses, and the diagrams of SC nanobeams are
similar to those of SS nanobeams. Figure 2a exhibits that consideration of the small scale effect
decreases the area of the diagram, and this reduction becomes greater by increasing the value of
the nonlocal parameter. But it is seen from Figs. 2b and 2c that the area of the diagrams increases
as the mode number and the amplitude ratio increase. In other words, an increase/decrease in
the area of the diagrams due to the mentioned parameters is equivalent to an increase/decrease
in the initial velocity condition.

4. Conclusion

This paper deals with exact solutions for large amplitude flexural vibration analysis of nonlocal
Euler-Bernoulli nanobeams with SS and SC end conditions and von Kármán geometric nonline-
arity. The equation of motion of nanobeam has been obtained in a nonlocal form and the exact
analytical solution for natural frequency has been established using the exact elliptic integrals
method. Two test examples are presented to demonstrate the accuracy of the formulation and
applicability of the elliptic integrals method for nonlocal nonlinear free vibration analysis of
nanobeams. It is observed that the small scale effect on the frequency ratios not only depends
on the nanobeam dimensions and vibration amplitude, but also depends on the mode number
and boundary conditions. In addition, it is seen that the small scale effect caused a reduction in
the area of the phase plane diagrams of the nanobeams.
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